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Abstract
Dosage optimization to maximize efficacy and minimize toxicity is a poten-
tial issue when administering radiotherapy (RT) in combination with immune 
checkpoint blockade (ICB) or inhibitors of the DNA Damage Response Pathway 
(DDRi) in the clinic. Preclinical models and mathematical modeling can help 
identify ideal dosage schedules to observe beneficial effects of a tri-therapy. The 
aim of this study is to describe a mathematical model to capture the impact 
of RT in combination with inhibitors of the DNA Damage Response Pathway 
or blockade of the immune checkpoint protein – programmed death ligand 1 
(PD-L1). This model describes how RT mediated activation of antigen present-
ing cells can induce an increase in cytolytic T cells capable of targeting tumor 
cells, and how combination drugs can potentiate the immune response by in-
hibiting the rate of T cell exhaustion. The model was fitted using preclinical 
data, where MC38 tumors were treated in vivo with RT alone or in combina-
tion with anti-PD-L1 as well as with either olaparib or the ataxia telangiectasia 
mutated (ATM) inhibitor—AZD0156. The model successfully described the ob-
served data and goodness-of-fit, using visual predictive checks also confirmed 
a successful internal model validation for each treatment modality. The results 
demonstrated that the anti-PD-L1 effect in combination with RT was maximal 
in vivo and any additional benefit of DDRi at the given dosage and schedule 
used was undetectable. Model fit results indicated AZD0156 to be a more potent 
DDRi than olaparib. Simulations of alternative doses indicated that reducing 
efficacy of anti-PD-L1 by 68% would potentially provide evidence for a benefit 
of ATM inhibition in combination with ICB and increase the relative efficacy 
of tri-therapy.
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INTRODUCTION

The first programmed death ligand 1 (PD-L1) inhibitor, 
atezolizumab was approved by the US Food and Drug Ad-
ministration in 20161 and, since then, other anti-PD-L1 
agents, such as durvalumab2 and avelumab,3 have shown 
to have significant clinical benefits in a wide variety of can-
cers, such as urothelial carcinoma,1–3 non-small cell lung 
cancer (NSCLC),4 and colorectal cancer.5 Recent studies, 
however, have indicated that in patients with NSCLC, anti-
PD-L1 based therapies are mostly effective in tumors with 
high tumor associated expression of PD-L1, where median 
overall survival is shown to increase significantly compared 
with standard of care platinum-based chemotherapy. How-
ever, other tumors, such as hepatocellular carcinoma, do 
not share this link between PD-L1 expression and survival 
after treatment with anti-PD-L1.6 Furthermore, improve-
ments in progression-free survival are not always signifi-
cant, this is partially due to immunoresponsive tumors 
having a strong propensity to relapse when immunotherapy 
is administered.7 Tumors can attain acquired immunity to 
anti-PD-L1 via various mechanisms, such as the acquired 
upregulation of different exhaustion receptors capable of 
further reducing the cytolytic activity of effector T cells.8

Although PD-L1 targeted immune checkpoint blockade 
(ICB) has shown some capability in prolonging survival 
for patients with metastatic cancer when administered as 
a monotherapy or in combination with chemotherapy,9 
another potential combination partner to anti-PD-L1 may 

include radiotherapy (RT), which may provide additional 
curative benefits in the clinic. RT is known to induce ex-
pression of damage-associated molecular patterns which 
are known to play significant roles in the activation of anti-
gen presenting cells (APCs).10 Dendritic cells then present 
tumor-associated antigen to CD8+ T cells, where the CD8+ 
T cell differentiates into a cytotoxic T cell, capable of induc-
ing immunogenic cell death in tumor cells via the release 
of cytolytic enzymes.11 However, such mechanisms up-
regulating the immune response to tumors also consist of 
negative feedback loops capable of inducing T cell exhaus-
tion.12 In vivo preclinical studies in CT-26 syngeneic tumor 
models have shown upregulation of PD-L1 on tumor cells 
after administration of fractionated RT, which can then in-
duce T cell exhaustion upon binding to PD-1 receptors.13 
Blockade of PD-L1 during RT has been shown to poten-
tiate the immune response in preclinical tumor models.14 
RT combined with either sequential or concurrent treat-
ment of anti-PD-L1 has been shown to provide potential 
clinical benefit. In phase III of the PACIFIC clinical trial, 
concurrent chemoradiotherapy followed sequentially by 
durvalumab significantly improved both progression-free 
survival and overall survival when compared with chemo-
radiotherapy followed by placebo.15,16 However, finding 
the optimal dosage and schedule of RT in combination 
with ICB is difficult and is likely to be context dependant.17

Inhibitors of the DNA Damage Response Pathway 
(DDRi) can also aid in the potentiation of the immune 
response by increasing the sensitivity of tumor cells to 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE OF THIS TOPIC?
Clinical trials incorporating radiotherapy (RT) in combination with both im-
mune checkpoint blockade (ICB) and DNA damage response pathway inhibitor 
(DDRi) are ongoing. Currently, there are very few mathematical models which 
may provide information on optimizing the dosage and schedule for these drugs.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study uses nonlinear mixed effects modeling to capture the differential ef-
fects of RT in combination with ICB and/or DDRi on a population of mice chal-
lenged with the syngeneic tumor model – MC38.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study provides a new mathematical framework for assessing the impact of 
RT in combination with additional therapies on tumor growth trajectories. The 
model also allows for simulation of alternative potencies that may show improved 
relative responses of tri-therapy compared with bi-therapies.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This model provides potential scope for further assessment of potential dosage 
regimens that could improve the relative efficacy of tri-therapy. This could be 
beneficial for optimizing dosing strategies in preclinical experiments.
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RT. DDRis induce additional cell death in the tumor, 
which further activates cytolytic responses.18 Inhibitors 
of the poly-ADP-ribose polymerase (PARP) enzyme or 
ataxia telangiectasia mutated gene (ATM) have shown ef-
ficacy in preclinical tumor models when combined with 
RT.19 However, combining RT with DDRis in the clinic 
may require further optimization and patient stratifica-
tion to observe any additional value of these treatment 
modalities. Attempts to optimize dosage and schedule of 
these combinations could increase the efficacy to toxicity 
ratio, and would lead to both prolonged survival as well 
as improved treatment compliance.20 Optimization of 
dosage regimens to maximize the efficacy to toxicity ratio 
likely requires rationale developed from preclinical mod-
els, as well as mathematical modeling of tumor immune 
interactions, and how different treatment modalities can 
potentiate the immune response. Population modeling 
of RT in combination with anti-PD-1 or anti-PD-L1 has 
been previously performed to predict optimal dosage reg-
imens in the context of a highly immunogenic syngeneic 
tumor model—CT-26.21 However, less immunogenic tu-
mors and dosage optimization of RT in combination with 
immune checkpoint inhibitors (ICIs) and DDRi-based 
therapies are yet to be modeled in this manner. Model-
ing different tumors with different immunogenicities is 
crucial to understand differences in treatment responses.

The aim of this study is to describe a mathematical 
model that incorporates the effects of RT, DDRi, and ICI 
on the immune system in the context of the colorectal 
cancer syngeneic tumor model—MC38. Simulations 
were also performed to explore the role of various com-
ponents of this model on the response. The model incor-
porates parameters associated with tumor clearance by 
T cells, APC death rate, and APC activation of T cells, 
while fitting for baseline tumor growth rate, APC acti-
vation rate due to RTs effects on the tumors proliferative 
rim, T cell exhaustion, and inhibition of T cell exhaus-
tion by either DDRi or ICI.

METHODS

Experimental data

The data for this study consisted of four datasets obtained 
from the subcutaneous injection of the murine colorectal 
cancer cell line—MC38, in female C57/BL6 mice. These 
datasets were derived from time-to-event experiments that 
were designed to assess the efficacy of RT/ICI/DDRi com-
binations on tumor growth after injection of 107 tumor 
cells. Mice were euthanized when the tumor reached over 
1 cm3 or when the tumor was presenting as a wet ulcer-
ated lesion. Mice were also euthanized if welfare criterion 

or weight-related criterion were not met during the experi-
ment. All animal procedures were conducted according to 
UK Home Office guidelines, the Animal Scientific Proce-
dures Act 1986, and protocols were approved by a local ani-
mal welfare and ethical review body. The first two datasets 
(DDRIO1815 and DDRIO1821) were based on experiments 
that assessed the efficacy of RT in combination with the 
PARP inhibitor olaparib (PARPi) and/or anti-mouse-PD-L1 
(ICI). The other two datasets (DDRIO182 and DDRIO1835) 
were based on experiments that assessed the efficacy of RT in 
combination with ATM inhibition using AZD0156 (ATMi) 
as well as ICI. Treatment and randomization started 3 days 
after initial injection (day 0). Cohort sizes and treatment 
regimens are shown in Table  1. For three (DDRIO1815, 
DDRIO1821, and DDRIO182) of the four datasets, each 
dataset consisted of 99 mice split over eight cohorts. Fifteen 
(15) mice were in the control cohort and were given no ther-
apy or mock oral and intraperitoneal treatments (control 
group and cohort 1). Twelve (12) mice were used in each 
of the other cohorts. Three cohorts (cohorts 2–4) of 12 mice 
each were given RT (RT group), DDRi, or ICI as monothera-
pies, three cohorts (cohorts 5–7) of 12 mice each were given 
either ICI + DDRi (ICI/DDRi cohort) or RT + DDRi (RT/
DDRi cohort) or RT + ICI (RT/ICI cohort), and one final co-
hort was given all three treatments (RT/DDR/ICI cohort). 
However, one experiment (DDRIO1835) involving ATM 
inhibition only had 12 control mice, with six mice per co-
hort which were treated with RT/ATMi, or RT/ICI. For all 
mice which were given RT, 10 Gray (Gy) of external beam 
radiation was given as 2 Gy fractions once per day for 5 days. 
For mice given anti-PD-L1, 10 mg/kg of ICI was given intra-
peritoneally twice per week on Mondays and Thursdays for 
3 weeks, 1–2 h prior to RT. For mice given olaparib (PARPi), 
100 mg/kg of olaparib was given orally each day for 21 days. 
Mice were given the 2.5 mg/kg of ATM inhibitor AZD0156 
(ATMi) orally each day for 21 days and both DDRi treat-
ments were given 1–2 h prior to RT. Tumors were measured 
three times per week until they were euthanized (Monday, 
Wednesday, and Friday). The full dataset comprised a total 
of 2143 datapoints. Mice which exhibited a complete re-
sponse were censored from additional time bins after the 
complete response was reached.

Model formulation and development

The mathematical model used to capture tumor-immune 
system interactions is shown in Figure 1, model param-
eters are shown in Table 2. The model incorporates two 
tumor compartments describing a proliferating rim (P(t)) 
and a quiescent core (Q(t)), as well as two immune com-
partments describing APCs (A(t)) and cytolytic T cells 
T(t). DAISY was used to confirm that the model was 
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structurally identifiable.22 Interindividual variability (IIV) 
was incorporated into the estimated depth of the quies-
cent core at day 0 (Q0), the baseline tumor growth rate (λ) 
and T cell exhaustion rate (β). IIV was assumed to be log-
normally distributed and residual unexplained variability 
was assumed to be additive.

The tumor compartments

P(t) is assumed to grow logistically, where competition for 
space within the rim leads to the transfer of cells in the 
rim and into Q(t). Cells within the rim can be targeted by 
T(t), the system of equations is set up so that for approxi-
mately every cell killed in the rim by T(t), one cell from 
the core is transferred into the rim as the tumor shrinks, 
and that the amount of cells within the tumor is propor-
tional to the tumor diameter. For all assessed models, the 
tumor compartments are unchanged (Equation 1).

where K, �, KR, KPT and KPTQ are the rim carrying capacity, 
the baseline tumor growth rate, the affinity of transfer from 
the core to the rim, the rate of T cell mediated death within 
the rim, and the rate of T cell mediated transfer of the core 
into the rim, respectively.

The dendritic cell compartment

Two compartments in this model describe the immune 
system, A(t) represents APCs that react to the cell death 
that occurs in the rim due to RT (R(t)) where R(t) is a 
Heaviside function active between days 0 and 4, and the 
Heaviside amplitude is scaled to represent the daily dose 
of radiation in Gray (Gy). A(t) is responsible for the ac-
tivation of cytolytic tumor specific CD8 cells (T(t)). This 
model assumes comparatively little baseline influx of A(t) 
and T(t) prior to RT. For all models, the A(t) compartment 
remains unchanged (Equation 2).

(1)

Proliferative rim growth rate
⏞⏞⏞

dP(t)

dt
=

Logistic growth
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

� ⋅P(t) ⋅

(

1−
P(t)

K

)

+

Q to P transfer
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

KPTQ ⋅P(t) ⋅T(t) ⋅Q(t)

KR+Q(t)
−

CD8 targeted rim death
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

KPT ⋅P(t) ⋅T(t)

Core growth rate
⏞⏞⏞

dQ(t)

dt
=

Competition inside rim
⏞⏞⏞

� ⋅P(t)2

K
−

Q to P transfer
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

KPTQ ⋅P(t) ⋅T(t) ⋅Q(t)

KR+Q(t)

T A B L E  1   Description of treatment cohorts for experiments assessing impacts of RT/ICI/DDRi on MC38 tumor growth.

Cohort allocation

Datasets/experiments

DDRIO1815 DDRIO1821 DDRIO1824 DDRIO1835

Cohort
# of  
mice Control RTa ICIb

DDRic 
(PARPi) Control RTa ICIb

DDRid  
(ATMi) Control RTa ICIb

DDRid 
(ATMi)

1 15/12e ✓ ✓ ✓

2 12/6e ✓ ✓ ✓ ✓

3 12/6e ✓ ✓ ✓ ✓

4f 12/6e ✓ ✓

5f 12/6e ✓ ✓ ✓ ✓

6f 12/6e ✓ ✓ ✓ ✓

7f 12/6e ✓ ✓ ✓ ✓

8f 12/6e ✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: ATMi, ataxia telangiectasia mutated inhibitor; DDRi, DNA Damage Response Pathway; ICI, immune checkpoint inhibitor; PARPi, PARP 
inhibitor olaparib; RT, radiotherapy.
aTwo Gray (Gy) of external beam RT given once per day from days 0–4.
bTen mg/kg ICI given twice per week for 3 weeks.
cOne hundred mg/kg olaparib is given once per day for 21 days, 1–2 h prior to RT.
dThe 2.5 mg/kg AZD0156 given once per day for 21 days 1–2 h prior to RT.
eNumber of mice in DDRIO1835.
fCohorts 4–8 from DDRIO1835 were removed from the analysis prior to fitting due to small cohort sizes (6) representing alternative treatment schedules to 
those described in the other datasets.
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where K�A, � and KA� are the baseline APC recruitment 
rate, RT mediated APC recruitment rate, and APC natural 
death rate, respectively.

The T cell compartment

For all models, T(t) is assumed to be recruited by A(t), 
whereas T(t) naturally decays (exhaustion) at rate β. 
For the first model (model 1), the exhaustion rate is un-
changed by the incorporation of either DDRi or ICI.

where KAT and � are the APC mediated T cell activation rate 
and T cell exhaustion rate, respectively.

Due to the dosing regimen for both DDRi and ICI lead-
ing to complete saturation of inhibitory compounds.23–26 
Furthermore, as all experiments used the same doses of 
PARPi, ATMi, and ICI, parameterizing the model as a 
pharmacokinetic-pharmacodynamic (PK-PD) model is 
more difficult and would not be particularly informative. 
Taken together, there was little benefit in involving the ef-
fects of PKs in this model, and the PDs can be modeled 
simply as inhibition constants.

For model 2, DDRi is assumed to have no effect on T 
cell exhaustion, and any combination effects are assumed 
to be dependent on the presence of ICI only. ICI is as-
sumed to inhibit the rate of T cell exhaustion by a factor 
of 1 + �ICI, where �ICI is a parameter that describes the im-
pact of ICI on T cell exhaustion at the given dosage and 
schedule.

For model 3, DDRi is also assumed to have an impact 
on T cell exhaustion, but there is no significant difference 
between PARPi and ATMi in inducing this effect. The ef-
fects of combination therapy are assumed to inhibit the 
exhaustion rate by a factor of 1 + �ICI + �DDRi, where �DDRi 
is a parameter which describes the impact of either DDRi 
on the T cell exhaustion rate.

For the full model (model 4), the effects of PARPi 
and ATMi are assumed to be sufficiently different 
and inhibit the rate of T cell exhaustion by �PARPi and 
γATMi, respectively. This differential impact on PARPi 
and ATMi is assumed to extend to RT/DDRi/ICI 
combinations.

where �PARPi and �ATMi are parameters describing the differ-
ential impacts of incorporating PARPi and ATMi with RT or 
RT/ICI on the T cell exhaustion rate.

Tests for significant improvements in model fit for 
models 1, 2, and the full model were performed using 
the likelihood ratio test (LRT). Model 3 was compared 

APC influx rate
⏞⏞⏞

dA(t)

dt
=

Baseline influx
⏞⏞⏞

K�A +

R(t) and P(t) induced recruitment
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

� ⋅P(t) ⋅R(t)

−

Natural APC death
⏞⏞⏞

KA� ⋅A(t)

(2)R(t) = 2 Gy ⋅Heaviside(4.1 − t)

(model 1)

T cell influx rate
⏞⏞⏞

dT(t)

dt
=

APC activation of T cells
⏞⏞⏞⏞⏞⏞⏞

KAT⋅ ⋅A(t) −

T cell exhaustion
⏞⏞⏞

� ⋅T(t)

(model 2)

T cell influx rate
⏞⏞⏞

dT(t)

dt
=

APC activation of T cells
⏞⏞⏞⏞⏞⏞⏞

KAT ⋅A(t) −

T cell exhaustion
⏞⏞⏞

� ⋅T(t)

1+�ICI

(model 3)

T cell influx rate
⏞⏞⏞

dT(t)

dt
=

APC activation of T cells
⏞⏞⏞

KAT ⋅A(t) −

T cell exhaustion
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

� ⋅T(t)

1+�ICI+�DDRi

(model 4)

T cell influx rate
⏞⏞⏞

dT(t)

dt
=

APC activation of T cells
⏞⏞⏞

KAT ⋅A(t) −

T cell exhaustion
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

� ⋅T(t)

1+� ICI+�PARPi+�ATMi

F I G U R E  1   Schematic representation of mathematical model of 
tumor and immune response fitted to tumor growth data in MC38 
syngeneic mouse models. Processes involving fitted parameters are 
highlighted in bold. Created with BioRe​nder.com. APC, antigen 
presenting cell.

http://biorender.com
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with model 4 using the Akaike Information Criterion 
(AIC) due to the lack of nesting between these models.

Model fitting and simulation

A list of model parameters, definitions, values, and sources 
are shown in Table 2. The model was fitted simultaneously 
to control, RT, RT/DDRi, RT/ICI, and RT/DDRi/ICI cohorts 
with NONMEM version 7.4.3 using Stochastic Approxima-
tion Expectation Maximization (SAEM). Fitting with the 
first order conditional estimation (FOCE) method was used 
to obtain an appropriate initial estimate. For the final pa-
rameter estimates, expectation only importance sampling 
was used to calculate log-likelihood values, followed by a 
final covariance step to obtain standard error estimates. The 
parameters which were estimated using FOCE-SAEM were 
Q0, λ, α, and β, γPARPi, γATMi, and γICI as well as IIV on Q0, λ, 
and β. IIV was represented as a full block matrix in ℝ3×3. 

Random unexplained variability (RV) was assumed to be 
additive. The NONMEM model code is supplied within the 
supplementary material (Code S1, Data S1). Convergence 
was checked by use of five sequential parallel estimations 
with 10% increments in the fixed effect parameters, as well 
as a further five parallel estimations where the initial esti-
mates of the fixed effect parameters were set to 0.33, 0.67, 1, 
1.5, and 3 × the final parameter estimates shown in Table 2. 
There were 95% of expected values for a given parameter 
(�95,i) that were calculated using the typical value and IIV 
parameters, as shown in Equation 3.

where �i represents the typical value output of a given pa-
rameter I, and �2

i
 is the expected IIV of the corresponding 

parameter.
Individual fits, diagnostics, and visual predictive 

checks (VPCs) were evaluated using NONMEM and 

(3)�95,i = �i ⋅ exp
(

± 1.96 ⋅ �i
)

T A B L E  2   Table of final parameter estimates from model 4 (final model).

Parameter Description Units Value (RSE%) Citation

P0 Initial rim depth mm 2.4 36

Q0 Initial core depth mm 3.83 (2) Fitted

A0 Initial APC concentration cells mm−1 0 Fixeda

C0 Initial active CD8 concentration cells mm−1 0 Fixeda

K Rim carrying capacity mm 2.4 36

KPT CD8 rim killing rate cell−1 day−1 0.001 21

KPTQ CD8 transfer of core to rim cell−1 day−1 0.001 21

KR Transfer affinity from the core. mm 0.1 Fixedb

KϕA Baseline influx of APCS cells day−1 mm−1 0.001 Fixeda

KAϕ APC natural death rate day−1 0.648 37

KAT APC activation of CD8 cells day−1 9.12 37

α APC recruitment by RT cells Gy−1 mm−1 day−1 3.06 (2) Fitted

λ Baseline logistic rim growth rate day−1 0.239 (3) Fitted

β Natural CD8 exhaustion rate day−1 0.278 (23) Fitted

η(Q0) IIV in Q0 mm2 0.0429 (18) Fitted

η(λ) IIV in λ day−2 0.064 (17) Fitted

η(β) IIV in β day−2 1.25 (20) Fitted

COR(Q0, λ) Correlation between IIV estimates for Q0 and λ Dimensionless −0.27 Fitted

COR(Q0, β) Correlation between IIV estimates for Q0 and β Dimensionless −0.04 Fitted

COR(λ, β) Correlation between IIV estimates for λ and β Dimensionless −0.11 Fitted

γATMi ATMi inhibition of exhaustion Dimensionless 4.34 (40) Fitted

γPARPi PARPi inhibition of exhaustion Dimensionless 2.03 (46) Fitted

γICI ICI inhibition of exhaustion Dimensionless 11.9 (32) Fitted

σ Additive RV mm2 0.506 (4) Fitted

Abbreviations: APC, antigen presenting cell; ATMi, ataxia telangiectasia mutated inhibitor; ICI, immune checkpoint inhibitor; IIV, interindividual variability; 
PARPi, PARP inhibitor olaparib; RSE%, percentage relative standard error; RT, radiotherapy; RV, random unexplained variability.
a Assumed that minimal/no active CD8 cells are present without administration of RT.
b Assumed for consistency with the rate which CD8+ T cells remove cells in the rim.
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graphs plotted with R version 3.6.3.27 Heat maps showing 
simulation end points were plotted in R. The full model 
consists of 25 parameters, 14 of which were fitted, includ-
ing IIV and RV. Simulations of alternative potencies was 
also performed to assess the effect of alternative potential 
dosing regimens on the relative efficacy of RT/ICI com-
pared with corresponding tri-therapies (Methods S1).

RESULTS

Model parameter estimates

Final parameter estimates of the model are listed in Table 2 
with percentage relative standard errors (RSE%) for each 
estimated parameter. LRT and AIC indicated that the full 
model (model 4) significantly improved model fit compared 
to the reduced models (Table 3). Model 1 was confirmed 
to be structurally globally identifiable (Methods S1 and 
Code S2). Parameter estimates indicated a Q0 of 3.83 mm. 
When combined with the initial rim depth, this suggests an 
estimated initial tumor diameter of 6.23 mm, which agrees 
with measured mean diameter (6.31 mm). Assessment of 
RSE% values suggested highly precise estimates for Q0, λ, 
and α. However, estimates were not as precise for γPARPi 
and γATMi, with RSE% values of 41% and 46%, respectively. 
These RSE% estimates were still considered to be within ac-
ceptable limits to confirm the beneficial impact of incorpo-
rating DDRi in combination with RT.

When assessing convergence from varied initial condi-
tions, parameters Q0, λ, α, and β typically converged to values 
within 20% of the final parameter estimates shown in Table 3, 
however, the final estimates of γPARPi, γATMi, and γICI were 
more sensitive to varied initial estimates (Tables S1 and S2; 
Figures S1 and S2). The population T cell exhaustion rate for 
control and RT treated cohorts was estimated to be 0.278 day−1 
(T½ = 2.49 days). Ninety-five percent of the expected exhaus-
tion rates are between 0.03 and 2.48 day−1 in the context of 
RT as a monotherapy. In the context of bi-therapies, 95% of 
PARPi mediated inhibition of therapy is suggested to induce 

an exhaustion rate of between 0.009 and 0.81 day−1 (typical 
value 0.09 day−1). ATMi is expected to have a larger inhibitory 
effect on T cell exhaustion, where 95% of the exhaustion rates 
are expected to be within 0.005 and 0.464 day−1 (typical value 
0.05 day−1). ICI, however, is suggested to have the largest im-
pact on T cell exhaustion, reducing the overall exhaustion rate 
by 93%. RV is estimated to be ~0.5 mm2.

Model diagnostics

Conditional weighted residuals from the full model were 
calculated from individual fits and plotted against time. 
Due to the extensive amount of data, plots of residuals 
against time were split between the different treated co-
horts (Figure 2). Whereas plots suggested relatively evenly 
spread residuals, after day 18 there are signs of bias in 
some of the treated cohorts. Loess regression lines indi-
cate that RT treated cohort tumor sizes are overestimated 
after day 18 (Figure  2b). This time-related bias is more 
apparent in the RT/ATMi treated cohort (Figure 2c). RT/
PARPi, RT/ICI, and RT/PARPi/ICI cohorts show a rela-
tively even distribution of residuals over time, with a mod-
erate underestimation of tumor sizes at later timepoints 
(Figure  2d–f). Additional diagnostic plots indicated that 
population predictions over-estimate the expected tumor 
size, particularly diameters below the limit of quantifica-
tion as well as diameters close to the expected end point. 
Observed diameters from RT/ICI treated cohorts appear to 
be underestimated by the population prediction, whereas 
observed diameters from RT treated cohorts appear to be 
overestimated by the population prediction (Figure 3a,b). 
Individual predicted diameters were reasonably well esti-
mated against the observed diameter (Figure 3c,d).

Graphical model diagnostic with VPC

One thousand simulations were performed in NON-
MEM using the parameter values in Table 2 and plots 

T A B L E  3   Comparison of −2LLIMP and AIC estimates from models 1–4.

Model T cell exhaustion rate Description N of parameter −2LLIMP AIC

1 β Combinations have no impact on T 
cell exhaustion

11 2005 2027

2 β/(1 + γICI) ICI reduces T cell exhaustion 12 1962 1986

3 β/(1 + γICI + γDDRi) ICI and DDRi reduces T cell 
exhaustion

13 1949 1975

4 β/(1 + γICI + γPARPi + γATMi) ICI, PARPi, and ATMi reduces T 
cell exhaustion

14 1942 1970

Abbreviations: AIC, Akaike Information Criterion; ATMi, ataxia telangiectasia mutated inhibitor; DDRi, DNA Damage Response Pathway; ICI, immune 
checkpoint inhibitor; LL, log-likelihood; PARPi, PARP inhibitor olaparib.
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were generated in R to obtain the 5, 50, and 95 per-
centiles for tumor diameters of each simulated dataset 
(Figure  3). These values were overlaid with the ob-
served percentile values of tumor diameters from the 
data. To simulate the impact of dropout, only simulated 
tumor diameters of 11.44 mm or smaller were included 
in the VPCs, this corresponds to tumors which reach 
1.5 cm3. As expected, control tumor data from all four 

studies were well captured with this model (Figure 3a), 
as significant overlap is observed between the percen-
tile values from the control dataset, and the correspond-
ing percentile regions in the simulated dataset. VPCs 
indicated that the upper, median, and lower quantiles 
produced from the simulated dataset parameter values 
followed similar trends as the observed upper and lower 
quantile estimates (Figure 3b–f). However, with respect 

F I G U R E  2   Diagnostic CWRES plots vs time for model 4. (a) Control cohorts, (b) RT treated cohorts, (c) RT/ATMi treated cohorts, 
(d) RT/PARPi treated cohorts, (e) RT/ICI cohorts. (f) RT/DDRi/ICI treated cohorts. The annotation is reflective of the mean and variance of 
the CWRES. Black solid lines represent loess regression lines accounting for 33% of neighboring points within a local region. ATMi, ataxia 
telangiectasia mutated inhibitor; CWRES, conditional weighted residual; DDRi, DNA Damage Response Pathway; PARPi, PARP inhibitor 
olaparib; RT, radiotherapy.
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to stronger treatment cohorts, such as RT/ATMi, RT/
ICI, and RT/PARPi/ICI, VPCs indicated that model pa-
rameters overestimated tumor sizes at later timepoints.

Simulation of alternative drug potencies

The results from the VPCs indicated that at the given dos-
age and schedule, the impacts of RT/ICI were too strong 
to observe a significant improvement in response in RT/
DDRi/ICI cohorts. A comparison of the upper, median, 
and lower quantile estimates between RT/ICI and RT/
DDRi/ICI cohorts show significant overlap in expected 
growth trajectories, whereas RT/PARPi and RT/ATMi 
simulations show significant differences in median per-
centile estimates to RT/DDRi/ICI. This indicates that the 
dosage of RT/ICI at the current schedule could be reduced, 
and dose reduction of ICI may also lead to observed sig-
nificant benefits of RT/DDRi/ICI which are comparable 
to the current RT/ICI schedule.

Due to the large dosages given relative to the half-
maximal inhibitory concentration for ATMi and disso-
ciation constant for ICI,23,24 an integrated PK-PD model 

would provide little information on how to optimize 
dosing strategies, as the high doses given mean that any 
variability observed is unlikely to be due to variability in 
the PK profiles of these drugs. In addition, the lack of 
alternative dosage regimens of DDRi increases the dif-
ficulty in developing an extensive dose response curve 
which would be more informative when assessing the 
effects of RT/DDRi. Considering these limitations of the 
experimental design, the parameter estimates produced 
in Table  2  that describe the impacts of ATMi and ICI 
were considered the maximum effects observable with 
these treatments, and simulations were performed as-
suming lower parameter estimates for γICI and γATMi, to 
mimic the effect of theoretical dosages and schedules 
producing different changes in active T cell profiles 
(Methods S1).

The results of the simulations suggested that the im-
pact of high doses of ICI can lead to issues in proving the 
effects of both ATMi and ICI for high efficacy tri-therapy. 
Simulations suggested that the maximum difference in 
cure rate between bi-therapy and tri-therapy occurred 
when, γICI = 3.9, and γATMi = 4.34 (Figure  4b). This coin-
cides with the 2.5 mg/kg dose of AZD0156 for 5 days, and 

F I G U R E  3   VPC of model 4 stratified by treatment. The 95% confidence intervals of the 5% and 95% quantile values of tumor sizes from 
simulated datasets (shaded regions) overlaid with corresponding quantiles from the observed dataset. Plotted points show the observed data. 
(a) Control cohorts, (b) RT treated cohorts, (c) RT/PARPi treated cohorts, (d) RT/ATMi treated cohorts, (e) RT/ICI treated cohorts, (f) RT/
DDRi/ICI treated cohorts. ATMi, ataxia telangiectasia mutated inhibitor; DDRi, DNA Damage Response Pathway; ICI, immune checkpoint 
inhibitor; PARPi, PARP inhibitor olaparib; RT, radiotherapy; VPC, visual predictive check.
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doses which lead to 32% of the maximal effect observed 
during RT/ICI. This leads to a cure rate of ~60% in bi-
therapy cohorts (Figure 4d), which increases to ~79% in 
the tri-therapy cohort, which is a similar value to the cure 
rates simulated after RT/ICI bi-therapy (86%) at the dos-
age used in the above experiments.

DISCUSSION

Mixed-effects modeling of tumor growth in response to RT 
and combinations of RT/ICI/DDRi therapies is still in rela-
tively early phases, with few models of RT/ICI combinations 
that are robust enough to provide suitable information when 
translating results to the clinic. This study describes initial 
phases of model development which incorporate tumor 
growth, T cell mediated immunogenic cell death, APC ac-
tivation by RT, APC mediated T cell activation, as well as 
T cell exhaustion. Model parameters RSE% were shown to 
be sufficiently precise, the least precise parameters being 
parameters associated with DDRi impacts on T cell exhaus-
tion, which may be partially due to fewer data points in the 

RT/PARPi and RT/ATMi treated cohorts, variability in rela-
tive efficacy between studies, as well as the redundancy of 
adding DDRi to the RT/ICI dosage regimen. Although this 
model has currently only been assessed in MC38 tumors, its 
structural properties may be well-suited to describe other 
preclinical and clinical datasets.

Model diagnostics indicated a time-dependent bias in 
RT and RT/ATMi treated cohorts at later timepoints. Rea-
sons for this may be due to limited data available at later 
timepoints in these cohorts as mice drop out of the study 
due to reaching the expected end point. With respect to 
RT/ATMi, this bias is partially due to the lower sample 
size (18 mice) compared to other regimens (24–48 mice), 
as well as a larger amount of inter-study variability. One 
study with a cohort of 12 mice exhibited cure in seven of 
12 mice when given RT/ATMi therapy, whereas the other 
study with six mice exhibited no cures.

When assessing convergence from varied initial condi-
tions, parameters Q0, λ, α, and β converged to values typi-
cally within 20% of the final parameter estimates observed 
in Table 2, indicating robust estimation of these parame-
ters. However, the final estimates of γPARPi, γATMi, and γICI 

F I G U R E  4   Simulations with modified potency values for γATMi and γICI. (a) Percentage of mice cured at day 34 when combining 
alternative γATMi and γICI potencies. (b) Differences in cure rates between RT/ICI and RT/ATMi/ICI. (c) Relative survival at day 34 in RT/ICI, 
RT/ATMi, and RT/ATMi/ICI cohorts when γATMi = 4.34 and γICI = 3.9. (d) Cure rates observed when γATMi = 4.34 and γICI = 3.9. ATMi, ataxia 
telangiectasia mutated inhibitor; ICI, immune checkpoint inhibitor; RT, radiotherapy.
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were more sensitive to varied initial estimates. This sen-
sitivity is likely due to the similar tumor trajectories ob-
served between RT/ICI and corresponding tri-therapies, 
making individual potency parameter estimates which 
extend to the tri-therapy regimens difficult to capture 
appropriately.

The VPCs effectively captured how tumors responded 
to the majority of dosage regimens, with RT/ATMi bi-
therapy showing the least consistency between experi-
mental data and simulated values, likely due to reasons 
mentioned above. VPCs indicated that in stronger dosing 
regimens, such as RT/ATMi, RT/ICI, and tri-therapy reg-
imens, the model simulations over estimate tumor size at 
later timepoints. This moderate underestimation of the re-
sponse could be due to the impact of mice dropping after 
the tumor reaching the end point volume of 1 cm3. This 
leads to a reduced observed median tumor size at later 
timepoints. This highlights the necessity for robust exper-
iments with prolonged end points, or the need to modify 
the dataset to incorporate a dropout effect more effec-
tively. Studies assessing different DDRi dosage regimens 
also may have alleviated these issues, as it would have 
been useful for model parameterization and development 
of adequate dose response curves.

It is difficult to underpin why there are differences 
between studies that lead to different cure rates, and 
reproducibility has been reported as a major issue in 
biological experiments.28 This highlights the need for 
performing in vivo experiments in a repeatable manner 
to minimize the biological variability. Additional data, 
such as cage cleaning cycles, should also be recorded, 
as the microbiome is also known to affect the tumor re-
sponse to various drugs.29 Additional attempts to make 
experiments more repeatable would also involve ensur-
ing that tumor sizes are similar between experiments at 
the time of randomization30 and potentially use cell line 
samples which have undergone a sufficiently similar 
amount of passages.31

The effect of RT is relatively consistent between stud-
ies, which explains why the RSE% for parameters asso-
ciated with APC recruitment and T cell exhaustion are 
highly precise and why the VPCs capture the RT mono-
therapy effects well. Taken together, these findings justify 
the large cohort sizes in each experiment, which gives 
extensive data points for more improved fitting with less 
residual error and better internal validation. Incorpora-
tion of additional drugs to a patient's treatment regimen 
provide an avenue to not only impact additional targets 
within a heterogeneous tumor, but also give potential to 
minimize the side effects of drugs given at high doses. 
Both model fits, VPCs, and optimization simulations sug-
gested that the effects of DDRi are overshadowed by the 
near maximal effect of ICI in these experiments. There are 

indeed results within the literature that demonstrate im-
proved efficacy of ATR inhibitors (ATRi) in combination 
with RT and ICI. Sheng et al.32 were able to show signifi-
cant efficacy of RT/ATRi/ICI due to improved immunoge-
nicity and tumor control after three doses of 6Gy external 
beam radiation in the hepatocellular carcinoma syngeneic 
model—Hepa 1–6. However, the varying immunophe-
notypic backgrounds between Hepa 1–6 and MC38 are 
likely to influence the results and explain some of the dif-
ferences in efficacy between different RT/DDRi/ICI. For 
example, Hepa 1–6 tumors have a larger percentage of 
CD45+ cells prior to treatment compared with MC38 and 
a larger abundance of CD8+ T cells, whereas MC38 also 
has a larger proportion of M1 associated macrophages.33

For each of the experimental studies used during model 
fitting, high doses of ICI and DDRi were given relative to 
their respective dissociation constants and target affini-
ties.23,24 Consequently, addition of PK parameters would 
provide little beneficial information in this model. To con-
ceptualize what the impacts of alternative dosing regimen 
may look like, simulations were performed while varying 
the values of γATMi and γICI. The effects of ATMi were sim-
ulated instead of PARPi due to the expected improved effi-
cacy of RT/ATMi compared with RT/PARPi at their given 
dosages and schedules. Because of this higher efficacy, 
simulations would indicate a larger relative difference 
in efficacy between tri-therapies and bi-therapies, while 
also maintaining similar efficacies observed during RT/
ICI with 10 mg/kg anti PD-L1. This can also be observed 
when assessing simulations of γATMi at 2.34 units, which 
is a similar value to the expected potency of PARPi. Sim-
ulations at the above potency indicate that higher doses 
of ICI would show lower relative differences in efficacy 
between tri-therapy and the corresponding bi-therapy.

Simulations indicated that modification of the dosage 
regimen, leading to a 68% reduction in potency of ICI rel-
ative to the potency observed in the above experiments, 
in combination with the current ATMi dosage regimen, 
would provide the largest difference in cure rates between 
the bi-therapy regimens and corresponding tri-therapies. 
Simulations indicated that these potency values could 
lead to a cure rate of 79%, which is comparable to the 
cure rates simulated during RT/ICI high dose bi-therapy. 
Doses which provide this level of potency could then be 
informative for preclinical PD studies, in order to eluci-
date the mechanisms which RT/DDRi/ICI can combine 
to synergistically improve local tumor control. Preclini-
cal experiments now can be performed with the aim of 
finding the ideal ICI dosage regimen in combination with 
RT that leads to a 32% improvement in population T cell 
exhaustion rates compared with RT alone, which would 
also serve to test the hypothesis which the above simula-
tions have indicated, as the model specification relies on 
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the assumption that the dose-efficacy relationship for RT/
DDRi/ICI is linear, of which there are limited data avail-
able to confirm or deny this.

The model developed above contains IIV captured in 
both baseline tumor characteristics as well as IIV in ex-
pected T cell exhaustion rates, however, other models 
of RT in combination with ICI have negative feedback 
loops incorporated into the model,21 which this model 
lacks. Syngeneic models vary drastically in immunophe-
notype,34 and consequently, the mechanisms which can 
lead to negative feedback also may have the propensity 
to vary depending on the tumor model chosen,13,18 or 
the dosage schedule.35 T cell mediated negative feed-
back could be incorporated into the model with an ad-
ditional compartment which is upregulated by T cells, 
where T cell exhaustion is dependent on this additional 
compartment. Additional work will now be carried out 
which will assess which biomarkers may be relevant to 
describe the differential effects of RT in combination 
with DDRi or ICI.

In summary, this report describes a successful devel-
opment of a model which incorporates tumor growth via 
a proliferating rim and quiescent core, as well as den-
dritic cell recruitment and T cell activation, to popula-
tions of mice given RT/DDRi/ICI combination therapy. 
The model concludes that the effects of RT/ICI are near 
maximal and do not allow for significant improvement 
in efficacy by DDRi. Additional simulations suggest that 
reduction of the ICI efficacy by ~68% will lead to a larger 
effect observed between RT/ICI and RT/ATMi/ICI. 
Further preclinical experiments can now be produced 
in order to test this hypothesis and validate the above 
findings. The next stages of this work will be to analyze 
experimental data to assess whether additional biomark-
ers and negative feedback loops can be incorporated into 
the model, as this could provide additional evidence for 
alternative dosage regimen being beneficial to improve 
the rates of cure.
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